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Generalised Kdv and MKdv equations associated with symmetric 
spaces 

Chris Athorne and Allan Fordy 
Department of Applied Mathematical Studies and Centre for Nonlinear Studies, University 
of Leeds, Leeds LS2 9JT, UK 

Received 6 March 1986 

Abstract. We extend previous results on the linear spectral problem introduced by Fordy 
and Kulish. The odd-order isospectral flows admit both a Kdv and MKdv type reduction. 
The non-linear terms are related to the curvature tensor of the corresponding Hermitian 
symmetric space. Our KdV equations are themselves reductions of known matrix KdV 
equations. We discuss the conserved densities and Hamiltonian structure associated with 
these equations. 

1. Introduction 

It is well known (Wadati and Kamijo 1974, Calogero and Degasperis 1977) that the 
third-order isospectral flow of the matrix Schrodinger equation: 

(6’’- U ) @ = A 2 @  (1.1) 
with U an N x N real matrix, is the matrix K d v  equation 

U,, = U,,, - 3( uu, + U,U). 

In general this is a system of N 2  coupled (scalar) equations, but often only the symmetric 
case is considered, reducing the number of equations to i N (  N + 1). 

In this paper we associate a matrix K d v  equation with each of the Hermitian 
symmetric spaces, thus enabling the matrix U to have as few as N independent 
components, giving rise to a significantly reduced system (1.2). We similarly associate 
a generalised M K d v  equation with these symmetric spaces which, for class CI spaces, 
is related to (1.2) through a matrix Miura transformation. Both classes of equation 
are reductions of a general third-order isospectral flow of the linear spectral problem 
presented in Fordy and Kulish (1983) in the context of generalised NLS equations. In 
the case of matrix K d v  equations this spectral problem can be rewritten as a matrix 
Schrodinger equation as in (1.1). In the symmetric space coordinates the non-linear 
parts of the equations are written in terms of the corresponding curvature tensor, as 
in (2.6). 

Our general third-order system is Hamiltonian and possesses an infinite number 
of conserved densities. In the K d v  reduction half of these densities remain non-trivial, 
corresponding to the known (Olmedilla et a1 1981) densities for the matrix Schrodinger 
equation (1.1). However, in terms of the symmetric space coordinates our generalised 
K d v  equations are not usually Hamiltonian, even though they can be squeezed between 
two matrix K d v  equations, each of which is Hamiltonian. In the M K d v  reduction half 
of the above-mentioned conserved densities also remain non-trivial, but in this case 
there appears to be no Hamiltonian structure at all. 
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2. Symmetric spaces and the spectral problem 

First we review some of the basic facts concerning Hermitian symmetric spaces. More 
details can be found in Fordy and Kulish (1983) and Helgason (1978). We shall not 
be concerned with the geometry of these symmetric spaces but only with the associated 
splitting of the corresponding (semi-)simple Lie algebra 

g = k O m  

where k is a subalgebra of g and m (corresponding to the tangent space at point p of 
the symmetric space), the complementary subspace of k in g. The full relationships 
satisfied by k and m are 

[k, k I =  k [k, mI= m [m, m ]  c k. 

A special feature of Hermitian symmetric spaces is the existence of an element A E k 
such that k = C,(A)  = { B  E g: [ A ,  B ]  = 0). The element A can (and therefore will) be 
chosen to be diagonal: A E h c k c g where h is the Cartan subalgebra of g. This element 
is highly degenerate; indeed, adA (which is a dim g x dim g matrix) has only three 
distinct eigenvalues: 0, *a.  Specifically, we have m = m + O m -  and [ A ,  k] = 0,  [ A ,  X ' ]  = 
*uX' with a being the same value for all X' E m*. 

With A defined as above and Q ( x ,  t )  E m consider the linear spectral problem: 

k=(AA+Q)ICI  ( 2 . 1 )  

where A is the spectral parameter and t the time parameter defined by the linear 
evolution equation: 

rcr, = P(X, t ;  A)+ .  ( 2 . 2 )  

The integrability conditions of ( 2 . 1 )  and ( 2 . 2 ) ,  together with the isospectral condition 
A,  = 0, imply 

9, = P, - [AA + 9, PI ( 2 . 3 )  

which, for certain choices of P, is a system of non-linear evolution equations, exactly 
soluble by means of an inverse spectral transform. With Q = Q++ Q- = 
Xu (geeu + r - e e - u ) ,  where { e A u }  are the basis for m* and P = Po+ P++ P-,  equation 
( 2 . 3 )  becomes 

0: = P: + [ Po, 9'1 =F AuP' 

P: = [ Q+, P-]  + [ 0-, P']. 

The polynomial (isospectral) flows can be found recursively by putting P c N )  = X.0" PiA 
to obtain a system of Nth-order evolution equations. The first two flows are 

(2.5a) 

a2Q:, = 9 : x x  + 3 [ Q : ,  [O', 9'13. (2.5b) 

In terms of the coordinates qu and rFn these equations are written (using the summation 
convention): 

(2.6a) a4::=9:x++R"pY-s4 P 4 Y r -6 

(2 .66)  
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with corresponding equations for rFQ and where are the components of the 
curvature tensor of the corresponding symmetric space, given by [ ep ,  [e,, e-s]] = 
RaPy-Sea .  The Hermitian symmetric spaces are listed in Helgason (1978), thus provid- 
ing a classification of all such equations. There are four infinite families, labelled by 
the Cartan classification: AIII, CI, DIII, BDI. The generalised NLS equations ( f2 flow, 
usually written in the real form r - Q  = * ( q " ) * )  were considered in detail in Fordy and 
Kulish (1983).  In this paper we are mainly interested in the t3 flow. The inverse 
scattering transform for the linear problem (2 .1) ,  and hence the solution of all the 
above equations, has been discussed by Gerdjikov (1986).  

3. Reductions: generalised KdV and MKdV equations 

In this section we concentrate on the third-order flow (2 .5b)  which, in all but class 
BDI symmetric spaces, can be written 

a'(?:,= Q: , , -3(Q:Q-Q++ Q'0-Q:) ( 3 . 1 )  
with a similar equation for Q-. We consider the two reductions: Q- constant, corre- 
sponding to matrix K d v  equations, and Q- = *(Q')T (superscript T meaning matrix 
transpose), corresponding to generalised M K d v  equations. The first case corresponds 
to r-' being constant so that, by use of the Bianchi identities, (2 .6b)  can be written 

(3 .2a)  a2q;  = (q:, +%",,-sq P 4 Y r - S  ) x  

while the second corresponds to C a  = *qa,  so that (2 .6b)  takes the form 

a 2 q ;  = q;xx * 3R",,-,qxq P Y 4 8. (3 .26)  

3.1. Matrix K d v  equations 

When Q- is a constant matrix, we can multiply equation ( 3 . 1 )  from the left by Q- to 
obtain 

a' U,, = U,,, - 3 (  U') ,  ( 3 . 3 )  

for the matrix U = Q-Q'. A similar manipulation with the t5  equation for Q' leads 
to the fifth-order equation: 

a4  U,, = [ U,,,, - 5 (  UU,, + U,, U )  - 5 U: + 10 ~ ~ 1 , .  (3 .4)  

These are just two of the isospectral flows of a matrix Schrodinger equation such as 
( 1 . 1 ) .  Indeed, it is possible to derive this Schrodinger equation from the spectral 
problem (2 .1 ) .  In all but the class BDI symmetric spaces the spectral problem (2 .1)  
has block diagonal form: 

where q and r are m x n and n x m matrices, respectively, I,,, is the m x m identity 
matrix and qi, and 4b2 are m- and n-dimensional column vectors. Since TrA=O we 
have ma + nb = 0. The matrix 
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so that U = rq is a square ( n  x n )  matrix which also satisfies equations (3.3) and (3.4). 
A simple manipulation of (3.5) leads to 

J I 2 x x  - ( a  + b)AJI2, - w 2  = -abA2JI* 

which, by means of J12 = exp[ -f( a + b)Ax]& is transformed into 

(3.6) 

&, -U+ = a( a - b)’A29. (3.7) 

When m = n, a + b = 0 so that this is the identity transformation and (3.6) and (3.7) 
are identical. This condition can hold in class AI11 and always holds in classes CI (in 
which case q and r are square and symmetric) and DIII (in which case q and r are 
square and skew-symmetric). In the class AI11 it is usual that m # n, so that without 
loss of generality m < n, in which case (3.3) consists of n 2  scalar equations whereas 
(2.6b) represents mn( < n 2 )  equations. Indeed, in both cases there are only mn indepen- 
dent functions qa, making the system (3.3) degenerate. This is a reduction of the n 2  
independent equations derived from (3.5) when m = n. 

Furthermore, the same manipulation can be carried out for W = Q’Q- (or 
equivalently the m x m matrix w = qr). Here we have only m2 < mn independent 
equations, this time for certain linear combinations of the mn independent variables. 

3.2. Generalised M K d V  equations 

We now consider the reduction Q- = ( Q+)T, which corresponds to = qa and to 
equation (3 .26) .  The RHS of this equation is not an exact derivative, so (3 .26)  is not 
in conservation form. In all but class BDI the spectral problem has block diagonal form: 

(3.8) 

where v is an m x n matrix, I,,, is the m x m identity matrix and JI1 and J12 are m- and 
n-dimensional column vectors. In terms of v, equation (3.1) is 

(3.9) 
a 2 v,, =v,,, -3(v ,vTv+wTv,) .  

3.3. Generalised Miura transformations 

In the case when v is a square ( n  x n )  and symmetric matrix we can change the basis 
so that (3.8) takes the form 

which implies that 

(3.10) 

If we define U by 

U = v, + V L  

(3.11) 

(3 .12)  
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then (3.1 1) takes the form of the matrix Schrodinger equation ( 3 . 7 ) .  This is a generalised 
Miura transformation (Fordy and Gibbons 1980, 1981) which maps isospectral flows 
of (3 .10)  into those of ( 3 . 7 ) .  In particular the generalised M K d v  equation ( 3 . 9 ) ,  with 
vT=v is mapped onto the generalised K d v  equation ( 3 . 3 ) .  Since U must also be 
symmetric in this case, both these spectral problems are related to class CI symmetric 
spaces. 

4. Conserved densities and Hamiltonian structure 

For the general system of § 2,  the Hamiltonian structure was given in Fordy and Kulish 
(1983):  

with H ,  = 2, dx, the conserved densities X ,  being defined below. From the equations 
of motion ( 2 . 6 )  and ( 4 . 1 )  we can calculate the first few densities 'by hand' in terms of 
the metric and curvature tensors of the symmetric space: 

( 4 . 2 h )  

( 4 . 2 ~ )  

-qPr-sq"q p r - u ,  ( 4 . 2 e )  

These densities can be generated systematically (Athorne and Fordy 1986) in terms of 
the asymptotic expansion P =2?==, P j K '  satisfying ( 2 . 3 ) :  

1 
n + l  

2, =- TrAP,,,. a n - l  
( 4 . 3 )  

However, in this paper we are mainly interested in the reduced systems of 0 3.  

4.1. Generalised M K d v  equations 

Both reductions of 0 3 invalidate the Hamiltonian structure ( 4 . 1 ) ,  even though the 
conserved densities (4.2), in reduced form, still exist. For the reduction = qm,  the 
odd numbered conserved densities vanish identically whilst the even densities are 
generalisations of the familiar M K d v  ones. However, despite the infinite number of 
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conserved densities, the hierarchy to which (3.9) belongs is not Hamiltonian WRT the 
simpler possible Hamiltonian structures. 

4.2. Matrix Kdv equations 

We start with the matrix Schrodinger equation 

(a2-  U ) +  = i ~ ~ +  (4.4) 

where U is a N x N matrix of functions and + is an N-dimensional column vector. 
Let the jth-order differential operator q correspond to the j th  time, 4,  so that 

+l, = q+. (4.5) 

T3 = 4a3 - 6 Ua - 3 U,. 

R = 'Px'P-I (4.7) 

Corresponding to the matrix KdV equation (1.2) we have 

(4.6) 

Let 'P be the fundamental matrix of solutions of (4.4) and define matrix R by 

so that 

R , + R = =  U+:A=I,  (4.8) 

and 

so that 

(4.10) 

Thus 1 (Tr R )  dx is constant with respect to each of the t,. 

Riccati equation (4.8) leads to 
In the usual way we consider the asymptotic expansion R =E:==_, R,A-". The 

R - ,  =:I, Ro=O R I =  U 
(4.11) 

R,+, = -Rn,  - R,R,-i 
i = l  

and (4.10) implies that each of the Tr R,  is conserved. Each of the even terms, R2, ,  
is an exact derivative, so leads to a trivial conserved density. The Hamiltonians are 
numbered so that HZnfl is proportional to RZn+3 dx. After simplification the first few 
are 

aH,  = Tr(fU2) dx J H - , =  Tr U d x  J 
(4.12) 

a2H3 = Tr(-fUS - U 3 )  dx. J 
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z2,+, is normalised so that the quadratic term is Tr(f(-l)”U;,). The equations of 
motion corresponding to H 2 , + ,  are 

The matrix K d v  (3.3) corresponds to H 3 .  

Remark. In the reduction = constant, the odd densities of (4.2) are exact derivatives 
whilst the even ones correspond to (4.12). In particular, under this reduction X4 
corresponds to H3 of (4.12) (the numbering is different because of the a in (4.13)). 

In 0 3 we derived the matrix Schrodinger equation (3 .7)  from the block diagonal 
spectral problem (3.5), with the potential U being the n x n matrix r q .  It was pointed 
out that a similar manipulation leads to a matrix Schrodinger equation with the potential 
U being the m x m matrix qr. If m S n, then both these matrices have rank m. 

The coefficients Rk, given by (4.11), are polynomial in U and its x derivatives. 
Depending upon which of the two Schrodinger operators is in use, let us write R k [ r q ]  
or R k [ q r ] .  Then, since r is constant, it is easily seen that Tr R k [ r q ] = T r  R , [qr ] ,  so 
that the two Schrodinger operators associated with the one spectral problem (3 .5)  have 
identical conserved densities. In each case the conserved density is a polynomial 
function of the matrix components U, and their x derivatives. Thus, for each conserved 
density we have polynomial expressions in two (usually) distinct sets of coordinates: 
( r q ) v  and ( q r ) , .  The consequences of this are discussed in the following examples. 

AIII. In this case the spectral problem is of the form ( 3 . 5 ) ,  with q an arbitrary m x n 
matrix. The compact real form is SU( m 4 n)/[S(U( m )  x U( n))] and corresponds to 
the condition r-O1 = -(4a)*, which is suitable for the discussion of NLS type equations 
(Fordy and Kulish 1983). 

Let p = qr and U = r q .  Then the Hamiltonian H3 of (4.12) can be written in terms 
of the coordinates U,, and p,, (using the summation conversion) with 

0 ’ 2 3  = - ; f f i ] x u / i x  - ‘TUUjkuki -;pqxp,ix - PilPjkPki .  (4.14) 

Equations (4.13) are thus 

a2ut~f1 = ( U i j x x  - 3 ‘ t k f f k , ) x  (4.15) 

and similarly for p,,. Since there are (generally) only mn individual functions in q the 
system of equations for all is apparently overdetermined. However, U has only m 
independent row vectors so that there are precisely mn independent equations (4.15), 
which can always be rearranged as equations ( 3 . 2 ~ )  for q“. 

Remark. If rank q = m but rank r <  m, then rank U < m and the system (4.15) is 
underdetermined for qa. 

The corresponding m2 equations for pi j  are always underdetermined for q” unless m = n. 
The apparently degenerate (when m < n )  Hamiltonian system (4.15) for U is a 

consistent reduction of the corresponding system for the case m = n. Thus, when m < n 
the system ( 3 . 2 ~ )  is squeezed between two Hamiltonian systems: one for U, too large 
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but reduced, the other for p, too small, being equations for certain linear combinations 
of the qa.  However, when m < n the equations for q" are not themselves Hamiltonian 
WRT a simple Hamiltonian structure, even though they possess an infinite number of 
conserved densities and an infinite number of commuting flows. When m = n  the 
system ( 3 . 2 ~ )  is Hamiltonian when r is chosen to be symmetric. In particular when r 
is the identity matrix, U = p = q. 

Example. 1 = m < n :  vector Kdv. Here uij = ria and without loss of generality rl # 0. 
Equation (4.15) for uu now takes the form (after dividing by r l ) :  

a = [ qjxx - 3 ( 4  * r ) qj Ix . (4.16) 

Since p = q -  r is a scalar it satisfies the scalar K d v  equations, which is also easily derived 
from (4.16). 

Example. 2 = m S n. Here 

so that uij = riqj + sipj and 

Since both matrices are of rank 2 we need only consider equations (4.15) for clj and 
uZj. Multiplying these equations by (L; :;)-I leads to 

(4.17) 

The four equations for pij can be obtained by taking scalar products of the vector 
equations (4.17) with r and s. 

CI and DUI. When m = n in class AI11 it is possible to reduce the system (4.15) by 
taking rand q to be both symmetric or skew-symmetric. These correspond respectively 
to class C I  and class DI I I  symmetric spaces. 

Example. m = n = 2 ,  symmetric. If in (4.17) we take rl = s2 = 1, r2 = s, = 0 and p1 = q2 
then we have three independent equations (relabelling p 2  as q 3 ) :  

2 
a 411,=41xxx-3(4:+4:)x  

= q21, = q2xxx -3q1q2. f  9293)X (4.18) 2 

2 
a q3l,=q3xxx-3(q:+q:)x. 

As a three-component system the Hamiltonian structure (4.13) is replaced by 

(4.19) 
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with X =  - ~ ( q ~ , + q ~ x ) - q ~ x - ( q l + q 3 ) 3 + 3 ( q l + q 3 ) ( q 1 q 3 - q ~ ) .  The matrix diag(l , j ,  1) 
is g“-’, the inverse of the metric tensor of the symmetric space. 

Example m = n = 4, skew symmetric. This reduction corresponds to the symqetric 
space inclusion 

SU(2n) c SO(2n) 
U(n) S(U(n) x U(n))’ 

We label the components of q as 

41 43 q 6  

- q 3  -q2 
- q 6  -45 - q 4  

and r similarly (but with the minus signs in the upper triangle). If we define vectors 
qi = ( q l ,  q 2 ,  q3 )  and qz = (q4, q 6 r  - q 5 )  and similarly for rl and r2, then equations ( 3 . 2 ~ )  
(with a = 1) take the form 

(4.20) 

where the ‘dot’ refers to the usual scalar product. Two of the Hamiltonians (4.12) are 

H1 = [a(Tr rq)2+2(det rq)’”] dx  

[-a(Tr rqx)2+2(det rq,)”’-a(Tr rq)3 -3(Tr rq)(det rq)li2] dx. 

(4.21) 
I 
I H3 = 

There is no need for alarm at the appearance of square roots here. For a skew-symmetric 
matrix the determinant is a perfect square, the square root being the Pfaffian. Thus 

(det rq)1i2 = ( r l  r4- r 3 r 5 +  r2 r6 ) (q1q4-  4395+ q 2 q 6 )  

= (r1* r2)(41 * 4 2 )  

so that the Hamiltonian is still polynomial in our variables. We do not know whether 
these Hamiltonians take such simple form for n > 4. Note, however, that when n is 
odd the Pfaffiians of q and r are both zero. 

BDI. 

SO(m+n)  
SO( m )  x SO( n )  

m = 2 .  

The linear spectral problem below is not of the block diagonal form (3.5), so that 
the given derivation of (3.1), (3.3) and (3.7) is invalid, although equation (3.2) still 
holds. The Hamiltonian structure (4.1) can still be used with Hamiltonians (4.2). The 
reductions of (4.2) obtained by setting r-“ constant are still valid, so that expressions 
of the form (4.12) still hold. However, there is no U = 9-9’ which can be used in 
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conjunction with (4.12) and (4.13). We present the case n = 5 ,  so that the linear spectral 
problem takes the form: 

C Athorne and A Fordy 

The first three equations of motion ( 3 . 2 ~ )  are 

(4.22) 

(4.23) 

where r - q  =Z; riq, and f ( q )  = & : + q l q 4 + q 3 q 5 .  The remaining two equations are 
obtained by interchanging 2-4 and 3-5. The first two conserved quantities take the 
form 

H I  = 1 ;( r -  q)2 dx 

H 3  = [ -+( r -  qx)2 - ( r .  q ) 3 ]  dx. I 
Setting ql = r l  = 0 gives the reduction: BDI with n = 4. 

(4.24) 
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